

Subscriber access provided by ISTANBUL TEKNIK UNIV

Two New Pyrrologuinoline Alkaloids from the Sponge Damiria sp.

Donald B. Stierle, and D. John Faulkner J. Nat. Prod., 1991, 54 (4), 1131-1133 DOI: 10.1021/np50076a038 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50076a038 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

TWO NEW PYRROLOQUINOLINE ALKALOIDS FROM THE SPONGE DAMIRIA SP.

DONALD B. STIERLE and D. JOHN FAULKNER*

Scripps Institution of Oceanography (012F), University of California at San Diego, La Jolla, California 92093-0212

ABSTRACT.—The structures of damirones A [8] and B [9], which are two new pyrroloquinoline pigments from the Palauan sponge *Damiria* sp., were determined by comparison of their spectral data with those of the batzellines.

Alkaloids having the 1,3,4,5-tetrahydropyrrolo[4,3,2-de]quinoline skeleton are uncommon in nature. In the marine environment, they have only been reported from a deep water Caribbean sponge of the genus Batzella, which contained batzellines A [1], B [2], and C [3] (1) and isobatzellines A [4], B [5], C[6], and D[7](2). This class of compounds is not unique to deep water sponges, for we have recently isolated similar compounds, damirones A [8] and B [9], from a shallow water Pacific sponge. The structural elucidations of damirones A [8] and B [9] are based on comparison of spectral data with those of quinone 10 that was prepared from batzelline A [1], the structure of which was determined by X-ray analysis.

The sponge *Damiria* sp. Keller (Order Poecilosclerida, Family Myxillidae) was collected by hand using scuba at Ngemelis drop-off (-20 m), Palau. The CH₂Cl₂-soluble material from an MeOH extract of the freeze-dried sponge was chromatographed on Sephadex LH20 CH₂Cl₂-MeOH (1:1) and then on Si gel to obtain damirone A [8] (0.04% dry wt) and damirone B [9] (0.04% dry wt) as purple solids.

The hreims of damirone A [8] established the molecular formula $C_{12}H_{12}N_2O_2$. The ¹³C-nmr spectrum contained two carbonyl signals at δ 179.3 (s) and 171.7 (s) and six olefinic signals at 153.8 (s), 127.1 (d), 124.9 (s), 124.7 (s), 115.6 (s), and 93.5 (d). Damirone A [8] was therefore tricyclic.

¹On leave from the Department of Chemistry and Geochemistry, Montana College of Mineral Science and Technology, Butte, MT 59701.

The uv spectrum of an MeOH solution of **8** [214 nm (δ 9000), 245 nm (ϵ 21000), 347 nm (ϵ 7200), 516 nm (ϵ

500)] was similar enough to that of batzelline A [1] to lead us to consider closely related structures. Comparison of the ¹H- and ¹³C-nmr data of 8 with those of guinone 10 (see Table 1) led to the conclusion that damirone A is the N^5 -methyl derivative of quinone 10. The new N-methyl signal appears at δ 3.01 in the ${}^{1}H$ -nmr spectrum and at δ 39.8 in the ¹³C-nmr spectrum, and the C-4 signal shows the expected downfield carbon shift from δ 41.1 in **10** to δ 51.7 in 8. A series of NOEDS experiments supported the proposed structure; irradiation of the N^5 -methyl signal at δ 3.01 caused enhancements of the signals at 5.20 (H-6, 9%) and 3.55 (H-4, 8%), and irradiation of the H-3 signal at 2.88 caused an 8% enhancement of the H-2 signal at 6.60. All other data were also consistent with the structural assignment.

The hrms of damirone B [9] indicated a molecular formula of $C_{11}H_{10}N_2O_2$, which is the same as that of quinone 10.

The uv spectrum of damirone B was similar to that of damirone A. The structure of damirone B [9] was proposed on the basis of a comparison of the ¹H- and ¹³C-nmr spectra with those of damirone A [8] and guinone 10 (see Table 1). The signals at δ 3.05 (s, 3H) in the ¹H-nmr spectrum and at 38.6 (g) in the ¹³C-nmr spectrum were appropriate for the N^5 methyl group. Damirone B [9] is therefore an isomer of quinone 10 that is methylated at the alternative nitrogen atom.

The discovery of related metabolites in Damiria sp. and Batzella sp. may be of chemotaxonomic interest since both sponges are classified on the basis of negative characters (R. van Soest, personal communication).

EXPERIMENTAL

COLLECTION, EXTRACTION, AND ISOLA-TION PROCEDURES.—Damiria sp. (22 g dry wt), a black, thickly encrusting sponge, was collected by hand using scuba at Ngemelis drop-off (-20 m), Republic of Palau. Although this specimen

TABLE 1.	¹³ C- (50 MHz, δ) and ¹ H- (360 MHz, δ, mult) nmr Data for Damirone A [8],
	Damirone B [9], and Quinone 10.

	Compound					
Carbon	8²		9°		10 ^b	
	¹³ C	¹H	¹³ C	¹H	¹³ C	¹H
N¹H	-			3.70 (br s)		
C-2	127.1	6.60(s)	127.4	6.58(s)	128.6	7.07(s)
C-2a	115.6	, ,	118.6		116.0	
C-3	20.3	$2.80(t)^{c}$	20.9	2.84(t) ^c	19.0	2.69(t) ^c
C-4	51.7	3.55(t) ^c	53.3	3.60(t) ^c	41.1	3.47 (t) ^c
√ ⁵ H						8.19 (brs)
C-5a	153.8		159.0		153.7	
:-6	93.5	5.20(s)	93.1	5.22(s)	92.5	5.02(s)
C-7	171.7		172.4		171.5	
C-8	179.3		180.5		177.7	
C-8a	124.9		no ^d		124.3	
C-8b	124.7		no		123.9	
N ¹ Me	35.9	3.83(s)			35.4	3.82(s)
N ⁵ Me	39.8	3.01(s)	38.6	3.05 (s)		

^aRecorded in MeOH-d₄.

^bRecorded in DMSO-d₆.

 $^{^{\}circ}J = 7.0 \text{ Hz}.$

dno = not observed.

lacks any obvious external characteristics, it possesses a unique spicule complement of tylotes and strongyles, both with acanthose endings, and smooth strongyles; without microscleres. The sponge was stored at -20° until it was extracted with MeOH. The MeOH extract was concentrated in vacuo to obtain an aqueous suspension that was extracted sequentially with hexane, CH2Cl2, and EtOAc. The CH2Cl2 extract was chromatographed on Sephadex LH-20 using CH₂Cl₂-MeOH (1:1) as eluent to obtain a purplecolored fraction. The purple fraction was separated on a Si gel column into two fractions that gave damirone A [8] (8 mg, 0.04% dry wt) and damirone B [9] (8 mg, 0.04% dry wt) as purple microcrystalline solids.

DAMIRONE A [8].—Purple solid, mp 240-242° (dec); ir (CHCl₃) 1675, 1600 cm⁻¹; uv (MeOH) 214 nm (€ 9000), 245 (€ 21000), 347 (€ 7200), 516 (€ 7200); ¹H nmr (360 MHz, MeOH d_4) see Table 1; ¹³C nmr (50 MHz, MeOH- d_4) see Table 1; hreims m/z 216.0903 (C₁₂H₁₂N₂O₂ requires 216.0899); eims m/z (intensity, %) 216 (100), 188 (68), 159 (33), 118 (31).

DAMIRONE B [9].—Purple solid, mp >250°

(dec); ir (CHCl₃) 1670 cm⁻¹; uv (MeOH) 243, 348, 492 nm; ¹H nmr (360 MHz, MeOH-d₄) see Table 1; 13C nmr (50 MHz, MeOH-d₄) see Table 1; hreims m/z 202.0768 ($C_{11}H_{10}N_2O_2$ requires 202.0742); eims m/z (intensity, %) 202 (100), 174 (71), 145 (46), 118 (42), 104 (41).

ACKNOWLEDGMENTS

We thank the government and people of the Republic of Palau for facilitating the field research. The sponge (SIO Invertebrate Collection # P1101) was collected by Steve Bobzin and Brad Carté and was identified by Dr. Rob van Soest, University of Amsterdam. We thank Ms. Mary Kay Harper for technical assistance. The research was funded in part by the California Sea Grant College Program (R/MP-46).

LITERATURE CITED

- S. Sakemi, H.H. Sun, C.W. Jefford, and G. Bernardinelli, Tetrahedron Lett., 30, 2517 (1989).
- H.H. Sun, S. Sakemi, N. Burres, and P. McCarthy, J. Org. Chem., 55, 4969 (1990).

Received 29 November 1990